
Three-Valued Asynchronous

Distributed Runtime Verification

Torben Scheffel

Institute for Software Engineering and Programming Languages
University of Lübeck, Germany

scheffel@isp.uni-luebeck.de

October 19, 2014

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 1/21

scheffel@isp.uni-luebeck.de

Table of Contents

Introduction

System Model

Distributed Temporal Logic

Case Study

Conclusion

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 2/21

Table of Contents

Introduction

System Model

Distributed Temporal Logic

Case Study

Conclusion

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 3/21

Introduction

Testing

Runtime Verification (RV)

Model Checking

Complexity

Expressiveness

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 4/21

Challenges of Distributed RV in Asynchronous Systems

There are various encountered when doing RV in asynchronous distributed

systems, for example:

I different execution speed of agents

I inherent non-determinism in execution order

I information have to reach the monitor (communication overhead)

I one centralized or many decentralized monitors?

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 5/21

Table of Contents

Introduction

System Model

Distributed Temporal Logic

Case Study

Conclusion

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 6/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3
i1(va1 , i1)

i2
(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3

i1

(va1 , i1)

i2

(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3
i1

(va1 , i1)

i2

(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3
i1

(va1 , i1)

i2

(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3

i1

(va1 , i1)

i2

(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

System Model

a3

a1 a2

µ4

µ1

µ2

µ3

i1

(va1 , i1)

i2

(v a2, i2)

va1 (2)

va2 (3)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 7/21

Table of Contents

Introduction

System Model

Distributed Temporal Logic

Case Study

Conclusion

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 8/21

Linear Temporal Logic (LTL) and Past Operators

w = w0w1w2w3w4 · · · ∈ Σω execution trace (word)

Set of propositions and boolean operators negation (¬) and or (∨).

Future operators:

I Next ()

I Until (U)

Past operators:

I Previous ()

I Since (S)

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 9/21

Three-valued LTL over finite traces (LTL3)

A. Bauer, M. Leucker, and C. Schallhart,

“Runtime Verification for LTL and TLTL”

Jw |= ϕKLTL3 =

> if ∀u ∈ Σω : wu |=LTL ϕ

⊥ if ∀u ∈ Σω : wu 6|=LTL ϕ

? else

The output of the LTL3 semantics is only > or ⊥ if every infinite extension of

the trace is a model (not a model resp.) of the formula in LTL.

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 10/21

Past-Time Distributed Temporal Logic (ptDTL)

K. Sen, A. Vardhan, G. Agha, and G. Rosu,

“Efficient Decentralized Monitoring of Safety in Distributed Systems”

An Additional @-operator is used to spread properties over different agents.

Example:

@a1 (pS @a2 q)

a1 : {p} {p} {p} {} {p}

a2 : {} {q} {q} {q} {q}

Only safety properties monitorable with ptDTL

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 11/21

Distributed Temporal Logic (DTL)

DTL

LTL3 @ ptLTL

ptDTL

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 12/21

DTL syntax

χ ::= @ft
a1ϕ | @

pt
a1ψ

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ |

ϕ | ϕU ϕ | @ft
a2ϕ | @

pt
a2ψ

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 13/21

DTL semantics

@
pt
a ϕ formulas are evaluated with ptDTL semantics.

@ft
aϕ formulas are evaluated similar to LTL3 with DTLω replacing LTL.

DTLω works as follows:

I all operators besides @ft
a and @

pt
a are evaluated as in LTL

I a subformula surrounded by @
pt
a is evaluated on agent a as in ptDTL

I a subformula surrounded by @ft
a is evaluated on agent a as in DTL

Values from other agents are delivered using messages whose send and

receiving points are marked in the runs of the agents.

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 14/21

DTL Advantages

The main advantages of DTL are:

I future and past operators

⇒ higher succinctness

I three-valued semantics

⇒ many more properties monitorable

I knowledge-vector and message symbols

⇒ precise theoretical evaluation possible

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 15/21

Monitor Construction

Monitors for past formulas of DTL: algorithm from

K. Havelund and G. Rosu, “Synthesizing monitors for safety properties”

Monitors for future formulas of DTL: deterministic Moore machines (DMM)

constructed as follows:

ϕ

ϕ

LTL

¬ϕ

Aϕ

ABA

A¬ϕ

Aϕ

NBA

A¬ϕ

Âϕ

NFA

Â¬ϕ

Ãϕ

DFA

Ã¬ϕ

Dϕ

DMM

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 16/21

Table of Contents

Introduction

System Model

Distributed Temporal Logic

Case Study

Conclusion

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 17/21

Case Study

C3

2 B

agent a3

C

C2

A 1

T S

A

B

agent a2

C

C1

1

A

agent a1C

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 18/21

Case Study

C3

2 B

agent a3

C

C2

A 1

T S

A

B

agent a2

C

C1 ϕ = @ft
a3 (¬ s1 U@

pt
a2 (mA ∧ @

pt
a1 s1))

Example:1

A

agent a1C

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 18/21

Benchmark

a1 a2µm

µ1

...

µn

ping

pong

I Main monitor µm evaluates a formula of the form

@ft
a1 (ϕ1 U(ϕ2 U(. . .U ϕn))) or @

pt
a1 (ϕ1 S(ϕ2 S(. . .S ϕn))) for future or past

case respectively.

I Every ϕi has the form @
pt
a2 (pi0 S(pi1 S pi2)) with the atomic propositions

pi0, pi1 and pi2 and is evaluated by µi.

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 19/21

Benchmark

remote monitors

tim
e

(s
)

0 2 4 6 8 10 12 14

0.1

0.2

0.3

ft 1

pt 1

ft 2

pt 2

ft 3

pt 3

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 20/21

Conclusion

We

I developed a system model which describes the distribution of monitoring

data through messages,

I developed a new temporal logic DTL for distributed RV with a greater set

of monitorable properties as ptDTL,

I programmed the transformation of DTL formulas into DMMs,

I used the created monitors for a case study to monitor a LEGO

Mindstorms assembly line.

Torben Scheffel Three-Valued Asynchronous Distributed Runtime Verification 21/21

	Introduction
	System Model
	Distributed Temporal Logic
	Case Study
	Conclusion

