
Three-Valued Asynchronous

Distributed Runtime Verification

Torben Sche�el

ú†
and Malte Schmitz

ú

úInstitute for Software Engineering and Programming Languages, Universität zu Lübeck, Germany

†Graduate School for Computing in Medicine and Life Sciences, Universität zu Lübeck, Germany

Abstract—This paper studies runtime verification of
distributed asynchronous systems and presents a moni-
tor generation procedure for this purpose, which allows
three-valued monitoring. The properties used in the
monitors are specified in a logic that was newly created
for this purpose and is called Distributed Temporal
Logic (DTL). DTL combines the three-valued Linear
Temporal Logic (LTL3) with the past-time Distributed
Temporal Logic (ptDTL), which allows to mark subfor-
mulas for remote evaluation. The monitor generation
presented in this paper is based on an adopted version
of the LTL3 monitor generation, which integrates the
ptDTL monitor construction. The aim of this new pro-
cedure is to increase the amount of monitorable prop-
erties compared to the properties monitorable with
ptDTL. Runtime verification using this new monitoring
has been implemented on LEGO Mindstorms NXT
robots communicating via Bluetooth.

I. Introduction
Software errors are an everyday problem. They occur

for a variety of reasons like coding, hardware or network
errors. Using software testing as a way to detect such
failures requires the developer to write every check per
hand. An option to check every execution path is model
checking, but it is di�cult to use model checking for
larger systems. Model checking is especially hard to use
for asynchronous distributed systems because the inherent
nondeterminism leads to a significantly higher number of
states than in other systems.

Another verification technique is runtime verification
(RV), which checks during runtime if the behaviour of
a system meets certain properties. These properties are
generally specified as formulas of a temporal logic and
then transformed into monitors that check the property
during execution, as implemented in JavaMop in [1]. Thus
RV doesn’t need a complete model of the system and
because of that it can be used as a verification technique for
asynchronous distributed systems. One possible way to do
that is by using a centralized monitor that collects the runs
of all agents and then checks a property. But centralized
RV for asynchronous distributed systems generates some
serious overhead in communication because all the infor-
mation has to reach the central monitor. Thus this paper
studies RV for asynchronous distributed systems without
a central but with many decentralized monitors. These
monitors communicate by attaching data to the messages
already sent by the agents, such that no new messages will

be needed for the monitoring, which reduces the overhead
even further.

RV for asynchronous distributed systems is a sparsely
studied field. For synchronous distributed systems a mon-
itoring algorithm was given in [2], which uses the Linear
Temporal Logic (LTL, [3]), but this algorithm can’t be
used for asynchronous systems because it is based on a syn-
chronous bus. An approach to do RV on such systems with
the past-time Distributed Temporal Logic (ptDTL) was
given in [4]. The logic ptDTL was invented with two-valued
semantics for monitoring safety properties. Monitorability
as defined in definition 15 of [5] requires that a formula
is only monitorable if every finite prefix of a word can be
extended such that the formula is evaluated to a final truth
value. This means that it has to be possible to get to a
final statement about the state of the system for every
prefix of the word. Consider the properties “Proposition
a always holds.” and “Proposition a eventually holds.” as
an example. The first property is only monitorable using
a two-valued logic if ‹ is the final truth value. In this
case € only indicates that the property is not yet violated.
The second property would not be monitorable with such
a logic, even if it can be expressed, because € has to be
the final truth value and ‹ indicates that the property is
not yet fulfilled. To monitor properties of the former kind
the logic has to be restricted to formulas where ‹ is final.
The same applies to properties of the latter kind and €.

It follows directly that two-valued semantics like the
one from ptDTL can only be used to monitor either
safety or guarantee properties because either € or ‹ can
be the final truth value. However safety and guarantee
properties are only a small part of all properties. Manna
and Pnueli present in [6] a hierarchy of temporal properties
containing the safety and guarantee classes as well as
four other classes. In short, generally all properties in the
safety class can be violated but not fulfilled ultimately and
all guarantee properties can be fulfilled but not violated
ultimately. If looked at the two examples given above, the
first property is a typical safety-property and the second
one a typical guarantee-property.

The next section gives examples on properties of the
other classes that are interesting for RV, too, but not
monitorable with ptDTL.

A. Motivating examples

As mentioned before, with ptDTL either safety or guar-
antee properties are monitorable. For example consider a
property like “It should never happen on agent a1 that
its sensor s1 recognizes a high brightness value.” or a
property “It always has to happen that if a sensor s2 on
agent a2 recognizes a low brightness value, then the sensor
s1 of agent a1 never recognized a high brightness value.”
Both are safety properties and the first property can be
expressed in ptDTL as @

a1 ¬p where p is a proposition
that indicates whether s1 recognizes a high value and the
second as @

a2 (q æ @
a1 ¬p) where p is as before and

q indicates whether s2 recognizes a low value. Here the @
is used in ptDTL to refer to another agent in the system.
For example in the last mentioned property the @

a2 is used
to denote that the whole formula should hold on agent a2
and the @

a1 denotes that ¬p should hold on agent a1. In
this manner properties can be spread among many agents
in the system.

Thus with the @-operator ptDTL already has an ap-
propriate tool to specify properties of di�erent agents in
one formula, but as mentioned before, ptDTL has only two
di�erent output values. It is necessary to know before the
monitoring starts which output values of a logic indicate a
final statement about the state of the system, for example
that the system has a failure. If all possible output values
would indicate such a final statement, then in every step
of an agent a success or a violation of the formula would
be assumed. Thus at least one value is needed that does
not indicate such a final statement. In the context of two
output values this leads to the need of at least one non-
final value and thus if a step has this value as output,
the output of the next step could be the other value. This
leads to the previously mentioned statement that either
safety or guarantee are monitorable with ptDTL because
two final truth values would be needed to recognize the
violation of a safety formula or the fulfilment of a guarantee
formula. Furthermore using ptDTL one has to know before
the monitoring starts if safety or guarantee properties are
used because the appropriate output value has to be chosen
as meaningful. To avoid these problems a logic with three
output values is needed of which two are final to express
fulfilment and violation.

Furthermore there are more important properties out-
side of safety and guarantee that can be verified in asyn-
chronous distributed systems. Consider a property like
“On agent a1 the value of the sensor s1 has to be high
until the button b on agent a2 was pressed.” This property
is expressible but not monitorable with ptDTL because
the property can be fulfilled or violated once and for all.
Thus two final truth values are needed that indicate a
final fulfilment or violation of the formula. Else, with the
two truth values from ptDTL, either the fulfilment or
the violation couldn’t be recognized. With the Distributed
Temporal Logic (DTL) newly developed in this paper,
which is a combination of ptDTL and the three-valued
Linear Temporal Logic over finite prefixes (LTL3, [7]), the
property can be expressed as @ft

a1p U @pt
a2r where p is as

before and r indicates whether the button b was pressed
on agent a2. ft and pt stands for the formula consisting of

future time (ft) or past time (pt) operators. Because DTL
has a three-valued semantics with two final truth values,
the property can be monitored with DTL according to [5]
as shown later.

A more complex example would be a property like
“The sensor s of agent a3 should not be activated until
on agent a2 the motor m was turned on and before on
agent a1 the sensor s

Õ was activated.” As before this can’t
be monitored with ptDTL but if it is represented with
DTL as @ft

a3(¬s1 U @pt
a2(m · @pt

a1 s

Õ)) the property can
be monitored because of the evaluation of the until with
the LTL3 semantics. This formula is used again to show
RV on asynchronous distributed LEGO Mindstorms NXT
robots in section V.

As we have seen, with only two possible output values
there are problems when monitoring safety and guarantee
properties at the same time and that there are additional
properties outside of safety and guarantee that one wants
to verify as well. These examples motivate a logic that uses
the ptDTL as well as the LTL3 semantics which we will
introduce as DTL.

B. Overview
This paper presents a monitor generation procedure

that generates distributed monitors based on a property
specified in the logic DTL, which is an especially for this
purpose designed combination of ptDTL and LTL3. The
@-operator that already exists in ptDTL is also used in
DTL for specifying subformulas that are properties about
the run of a remote agent, so called remote properties. We
redefine ptDTL and extend it to the three-valued DTL
to be able to monitor boolean combinations of safety and
guarantee properties where € and ‹ are final truth values,
which requires “?” as a third truth value.

This paper is organized as follows: In section II the
model of an asynchronous distributed system which is used
in this paper is described. In section III a redefined version
of ptDTL and a monitor generation procedure for ptDTL
formulas is given. In section IV, the new monitor gener-
ation procedure is presented. Beforehand, DTL, which is
used for this procedure, is defined. The implementation
of RV with DTL on LEGO Mindstorms NXT robots and
the performed benchmarks on this hardware are finally
described in section V.

II. Asynchronous Distributed Systems
We adopt the model of distributed systems presented

in [4] which is a collection of n agents a1, a2, . . . a

n

œ A

and extend it by a more formal presentation and the
concept of messages. Every agent knows all other agents
and is able to send messages directly to any of them.
Such a message needs some finite time to arrive which
may vary. The agents run concurrently and don’t know
anything about the internal states of the other agents
except the information from the messages they receive.
The computation of such a distributed system is modelled
abstractly as a tuple containing a linear sequence of states
for every agent. Every state contains information about
the internal state of the agent, the messages sent by this

agent and the messages received by this agent since its last
state. As the content of the messages doesn’t matter such a
message is represented only by its sequence number i œ N.
Every agent increments its sequence number each time it
sends a message.

For every agent a œ A there exists a set APa with the
atomic propositions that may hold in a state of this agent
and a set M

a of message symbols representing incoming
and outgoing messages of this agent. The message symbols
are defined as follows

M

a = {øb

i

, ¿b

i

| b œ A\{a}, i œ N}

where øb

i

œ M

a means that agent a sends the message with
sequence number i to agent b and ¿b

i

œ M

a represents agent
a receiving the message with sequence number i coming
from agent b. A state of agent a is then defined as an
element of the alphabet

�a = 2APa fiM

a

and a run of an agent a is a word w

a = w

a

0w

a

1w

a

2 . . . œ
(�a)Ê with prefixes w

a

0..k

= w

a

0w

a

1 . . . w

a

k

œ (�a)ú. A run of
the whole system is an n-tuple w = (wa1

, w

a2
, . . . , w

an) œ
�Ê of runs for the n agents of A where we abuse notation
�Ê = (�a1)Ê ◊ (�a2)Ê ◊ . . . ◊ (�an)Ê for the set of all
possible runs. Such a run w œ �Ê of the system contains
no further information about the temporal relation of the
states of the di�erent agents. Every linearization satisfying
the constraint that sending a message with sequence num-
ber i from an agent a to an agent b occurs before receiving
that message at the agent b is allowed. For further usage
we will introduce the function last

a

returning the latest
position that agent a is aware of in w

b for a given remote
agent b.

A. Monitoring Asynchronous Distributed Systems
For the purpose of doing RV in such an asynchronous

distributed system we attach monitors to the agents.
These monitors work together to check a property of
the distributed system, but they only communicate by
adding some data to the messages already sent by the
agents. They cannot force their agent to send a message
or even communicate on their own. This design is chosen
to minimize the overhead created through the monitoring.
Therefore messages are not sent only for the monitoring
but the messages already sent by the system for other
purposes are reused for the monitoring.

Every agent keeps track of the states of the remote
monitors in a knowledge vector and adds information on
all the current outputs of monitors that are needed by
monitors attached to other agents. Figure 1 shows an
example of the intended information flow between the
monitors attached to di�erent agents. With every incoming
message the knowledge vector is updated.

In a system with m monitors attached to the agents
the set of possible assignments of a knowledge vector is
defined as V = {1, 2, . . . , m} æ B for an arbitrary truth
domain B. Let v

a œ V be an assignment of a knowledge
vector of agent a œ A then v

a(i) contains the last output
of the monitor µ

i

that agent a is aware of. The knowledge

a3

a1 a2

µ4

µ1

µ2

µ3
(va1

, i1)

(
v

a2
,

i2)

v

a1(2)
v

a2(3)

Fig. 1. Example of the information flow between cooperating
monitors. The monitor µ4 needs information regarding the output
of the monitors µ2 and µ3 attached to remote agents. Agent a1 first
sends a message with sequence number i1 to agent a2 and adds the
output of its monitor contained in its knowledge vector va1 to it. The
knowledge vector of agent a2 is updated with the newer information
va1 (2). Next a2 sends a message with sequence number i2 to a3
and adds its knowledge vector va2 to the message. This way the
monitor µ4 receives information about the output of µ2 and µ3 in
the knowledge vector as va2 (2) and va2 (3).

vector of an agent is updated with every incoming message
if the message contains newer output values of the remote
monitors than the ones currently stored in the knowledge
vector. This way information can be handed on from
one monitor to another even if a direct message between
the corresponding agents was never sent. This solution
continuously computes the best possible approximation to
a global state of the system. The used concept is inspired
by Lamports algorithm for generating a global snapshot
(see [8]) of a distributed system. Lamport timestamps (see
[9]) or vector clocks (see [10]) can be used to make sure
that the value in a knowledge vector is only overwritten
with newer values even if not all messages are delayed for
the same amount of time.

In the following sections we will define logics for such
asynchronous distributed systems consisting of n agents
a1, a2, . . . , a

n

œ A. The semantics will be defined on a
formula and an execution w = (wa1

, w

a2
, . . . , w

an) œ �+

of the system where �+ is the set containing all possible
executions of the system. The procedure described to
distribute information about the state of remote agents
through the system will be taken into account in the
semantics using the function last

a1 : �+ ◊ A ◊ N æ N
defined as follows.
Definition 1 (Last known position). For an execution w œ
�+ of the system, two di�erent agents a, b œ A, a position
g in the execution w

a of agent a and a position h in the
execution w

b of agent b we have
last

b

(w, a, h) = g

i� an interleaving sequence of m Æ n agents and m ≠ 1
message sequence numbers a1, i1, a2, i2, . . . , a

m≠1, i

m≠1, a

m

exists such that information is passed on through the mes-
sages from agent a = a1 to agent b = a

m

. To ensure that
information can be passed on we require that

’j < m : ÷k :øaj+1
ij

œ w

aj

k

· ÷¸ :¿aj

ij
œ w

aj+1
¸

and for the first message øa2
i1

œ w

a

g

with g maximal and for
the last message ¿am≠1

im≠1
œ w

b

k

with k Æ h holds. If both agents
are the same we use the convention last

a

(w, a, h) = h.

w

a2
0

w

a1
0

w

a2
1 w

a2
2

w

a1
1

w

a3
0 w

a3
1

a2

a1

a3

i1

i2

last
a3(w, a1, 1) = 0

Fig. 2. Execution w œ �+ of a distributed system. State wa1
0 in

position 0 is the last state of the execution wa1 of agent a1 that
agent a3 is aware of in state wa3

1 in position 1 of its execution wa3 .

In conclusion last
b

(w, a, h) = g means that agent
b in position h of its execution w

b knows exactly the
information about agent a that already existed in position
g of its execution w

a because a sequence of messages exists
which passed on this information from a to b. An example
is given in figure 2.

Using the last known position defined above we are now
able to define the known prefix of a run or an execution of
an asynchronous distributed system. The prefix known to
an agent b at a position of its run contains the prefixes of
the runs or executions of every agent, each up to the last
position known by agent b.
Definition 2 (Known prefix). For a run or an execution
w œ �Œ, an execution u œ �+, an agent b œ A and a
position h in the execution w

b of agent b we have

known
b

(w, h) = u = (ua1
, u

a2
, . . . , u

an)

such that ’a œ A : u

a = w

a

0..k

if k = last
b

(w, a, h) is
defined.

This definition leads to the known prefix being unde-
fined just for the words of the agents that we don’t know
anything about.

A monitor can only use information from monitors
attached to remote agents if the information is contained
in the known prefix. Everything happening on a remote
agent after the last known position has not yet reached the
current agent. The following sections will refer back to the
known prefix to define the semantics of the @-operator.
The known prefix has to be taken into account in the
semantics to make sure that monitors can be constructed
for the distributed logics presented in this paper.

III. Past-Time Distributed Temporal Logic

The past-time Distributed Temporal Logic (ptDTL)
is a logic for specifying properties of asynchronous dis-
tributed systems. It was invented by Sen et al. in [4] and
is based on the past-time Linear Temporal Logic (ptLTL).
Besides the operators from ptLTL, ptDTL has an @-
operator which is used to spread a property over di�erent
agents.
Definition 3 (ptDTL syntax adopted from [4]). Let p œ
APa be an atomic proposition of the agent a œ A belonging
to the innermost @ surrounding p and a1, a2 œ A be agents.
Then the set of ptDTL formulas is inductively defined as
follows:

‰ ::= @pt
a1Â

Â ::= true | p | Â ‚ Â | Â |
false | ¬ p | Â · Â | Â |
Â S Â | Â | ¬ Â | Â æ Â |
Â T Â | Â | @pt

a2Â

The set of ptDTL formulas including subformulas is ob-
tained by directly starting with the nonterminal Â and is
called sub(ptDTL).

The operator Â should be read “previously Â”, Â

“weak previously Â”, Â S Â

Õ “Â since Â

Õ”, Â “eventually
in the past Â”, Â T Â

Õ “Â triggers Â

Õ”, Â “always in the
past Â”, and @pt

a2Â “Â at agent a2 using past semantics”.
The formal ptDTL semantics is defined next. We adopt
the general idea from Sen et al. in [4] but use our model
of the distributed system and the known prefix as given
above to define the semantics of the @-operator. Thus the
semantics of the @-operator is defined more precisely.
Definition 4 (ptDTL semantics adopted from
[4]). The ptDTL semantics for an execution
w = (wa1

, w

a2
, . . . , w

an) œ �+ of a distributed system are
defined through the relation |=

a

µ �+ ◊N◊sub(ptDTL) for
every agent a œ A with b œ A being another agent, p œ APa

a proposition, i œ N a position and @pt
a

Ï, @pt
a

Â œ ptDTL
formulas as follows:

w, i |=
a

true
w, i |=

a

p i� p œ w

a

i

w, i |=
a

¬ Ï i� w, i ”|=
a

Ï

w, i |=
a

Ï ‚ Â i� w, i |=
a

Ï or w, i |=
a

Â

w, i |=
a

Ï i� w, i ≠ 1 |=
a

Ï and i > 0
w, i |=

a

Ï S Â i� ÷k Æ i : w, k |=
a

Â

and ’k < ¸ Æ i : w, ¸ |=
a

Ï

w, i |=
a

@pt
b

Ï i� u |=
b

Ï and u

b def.
or w0 |=

b

Ï and u

b undef.
with u = known

a

(w, i)
using the notation w0 = (wa1

0 , w

a2
0 , . . . , w

an
0). Furthermore,

w |=
a

Ï holds i� w, |wa| ≠ 1 |=
a

Ï holds and w |= @pt
a

Ï

holds i� w |=
a

Ï holds. The same equivalences as in ptLTL
apply for the other operators.

The semantics for the @-operator is defined based
on the known prefix u of the current agent a. If u

b is
defined, which means that some data about the state of the
monitors from agent b reached agent a through a sequence
of messages, the formula @pt

b

Ï holds i� u |=
b

Ï holds,
because u

b is the run of b at whose end the message was
send. If no data from b reached a until position i of the
run of a, then by convention @pt

b

Ï holds i� the first step
of b fulfils Ï.

A. Monitor generation
In this section let

remote(Ï) = {@pt
a1›1, @pt

a2›2, . . . , @pt
am

›

m

}
be the set of remote subformulas (all subformulas starting
with the @-operator) of a given ptDTL formula @pt

a

Ï œ
ptDTL with the cardinality m = | remote (Ï)|.

The generation of a monitor for @pt
a

Ï is done by creat-
ing a monitor for every remote subformula in remote(Ï).
Such a monitor has an internal state, takes one character
s œ �ai and outputs a truth value in B2. The monitor will
be implemented on agent a

i

and therefore only realizes
the steps performed on agent a

i

. The monitor has access
to the current assignment v

ai œ V of the knowledge vector
of agent a

i

where V = {1, 2, . . . , m} æ B2 with the two-
valued truth domain B2 = {€, ‹}. As described in section
II-A the knowledge vector is updated with every incoming
message if the message contains newer output values of
the remote monitors than the ones currently stored in
the knowledge vector. Therefore the last known monitor
output of a remote subformula @pt

ak
›

k

can be accessed as
v

ai(k). In the implementation these values are actually
handled as extra propositions but for simplicity’s sake this
solution is not explained in detail here.

The monitors for such formulas are algorithms that
evaluate a certain ptDTL formula with every step the
corresponding agent performs. The algorithm presented
here is based on Sen et al. in [4] and uses a local memory
containing the evaluation of all temporal subformulas in
the last step. For a given formula @pt

a

Ï œ ptDTL the
set of local temporal subformulas temporal(Ï) contains all
subformulas of Ï with a temporal operator as outermost
operator that are not inside another remote subformula.
The set temporal(Ï) includes Ï itself if its outermost
operator is a temporal one. A temporal subformula may
consist of other temporal subformulas. This leads to an
acyclic dependency graph of temporal subformulas of
@pt

a

Ï. For the rest of this section let Ï1, Ï2, . . . , Ï|T | œ
T = temporal(Ï) be the sequence of temporal subformulas
of the formula Ï treated in this section. We then have
’Ï

i

, Ï

k

œ temporal(Ï) : Ï

i

œ temporal(Ï
k

) ∆ i Æ k.

Let @pt
a

Â, @pt
a

Â

Õ œ ptDTL be past formulas, �a = 2APa

the input alphabet of agent a and s œ �a the current input
character, q, q

Õ œ Q = {1, 2, . . . , |T |} æ B2 two assign-
ments of a local memory assigning a truth value to every
temporal subformula and b œ B2 the output of the monitor.
For the monitoring function f

Ï

: Q ◊ �a ◊ V æ Q ◊ B2
the equation f

Ï

(q, s, v) = (qÕ
, —) holds i� — = eval(Ï) and

q

Õ(i) with 1 Æ i Æ |T | is inductively given as follows:

q

Õ(i) =
;

eval(Â) if Ï

i

= Â

eval(ÂÕ ‚(Â · q(i))) if Ï

i

= Â S Â

Õ

For the formulas @pt
a

Â, @pt
a

Â

Õ œ ptDTL and a propo-
sition p œ APa we define the evaluation of a formula
depending on the current memory assignment q

Õ, the
memory assignment q of the last step, the current state
s and the current assignment v of the knowledge vector
inductively as follows:

eval(true) = €
eval(¬ Â) = eval(Â)

eval(p) =
;

€ if p œ s

‹ else

eval(@pt
ai

›

i

) =
;

€ if v(i) = €
‹ else

eval(Â ‚ Â

Õ) = eval(Â) Û eval(ÂÕ)

eval(Ï
i

) =
;

q(i) if Ï

i

= Â

q

Õ(i) if Ï

i

= Â S Â

Õ

The computation of the new assignment q

Õ and the
definition of eval can easily be extended to other operators
using their equivalences.

In the initial assignment q0 œ Q of the local memory
the strong operators S, and are mapped to ‹ and
the weak operators T , and are mapped to €. In the
implementation presented in section V we compute the
first step of the monitor during the monitor generation
procedure using the initial values of the propositions which
are set in the source code. The outputs of the first step are
used as initial values in the knowledge vector assignment
v.

We denote the system of monitoring functions gener-
ated for the formula @pt

a

Ï œ ptDTL and all its remote
subformulas @pt

ai
›

i

œ remote(Ï) with M

Ï

. Let w œ �+ be
an execution of the distributed system A. In this system,
with every step an agent performs in the execution w, for
all monitors of this agent their new state is computed
using their monitoring functions. With every outgoing
message the knowledge vector of the sending agent is first
updated with the current outputs of its monitor and then
attached to the message. With every incoming message
the knowledge vector of the receiving monitor is updated
with the newer data contained in the knowledge vector
attached to that message. We denote the output of the
main monitoring function f

Ï

of this system after reading
the whole execution w as M

Ï

(w).
The following theorem states the correctness of this

system of monitoring functions.
Theorem 1 (Correctness of ptDTL monitor). Let w œ �+

be an execution of the distributed system A and @pt
a

Ï œ
ptDTL a formula that should be evaluated on agent a œ A.
Further let M

Ï

be the system of monitoring functions for
Ï. We then have

M

Ï

(w) = € i� w |= @pt
a

Ï.

Proof: As the used monitor generation for past time
LTL is well known (see [11]) this proof focuses on how
the known prefix is computed using the knowledge vector
of the agents. The ptDTL semantics refers to the known
prefix for subformulas starting with an @ and the known
prefix in turn is based on the last known position.

By definition the last known position last
a

(w, b, i) is
the position of the execution of agent b where the latest
message is sent that arrived on agent a until the current
position i of the execution of a. The monitoring function
computing the new state after reading the input at position
i is provided with the knowledge vector that was updated
regarding the remote agent b the last time with exactly this
latest message mentioned before. Therefore the knowledge
vector contains the information computed in the semantics
using the known prefix.

Provided with the correct assignment of the knowledge
vector the correctness of the monitoring function itself

follows from structural induction over its definition using
the fixed point equivalence of all linear temporal logics.

IV. Distributed Temporal Logic

In this section we present the main contribution of
this paper, the Distributed Temporal Logic (DTL) and
the monitor generation procedure for this logic. DTL
extends ptDTL as a logic for specifying properties of
asynchronous distributed systems. It combines the three-
valued LTL3 semantics with the ptDTL semantics defined
above. Using the three-valued semantics over the truth
domain B3 = {€, ?, ‹} we get the advantages described
in the introduction as shown later.
Definition 5 (DTL syntax). Let p œ APa be an atomic
proposition of the agent a œ A belonging to the innermost
@ surrounding p and a1, a2 œ A be agents. Then the set of
DTL formulas is inductively defined as follows:

‰ ::= @ft
a1Ï | @pt

a1Â

Ï ::= true | p | Ï ‚ Ï | Ï |
false | ¬ p | Ï · Ï |
Ï U Ï | Ï | ¬ Ï | Ï æ Ï |
Ï R Ï | Ï | @ft

a2Ï | @pt
a2Â

In this definition @pt
ai

Â refers to the ptDTL syntax defined
in the previous section. The set of DTL formulas including
subformulas is obtained by directly starting with the nonter-
minal Ï and is called sub(DTL). A DTL formula Ï is called
future or past DTL formula i� it has the form Ï = @ft

a

Ï

Õ

or Ï = @pt
a

Ï

Õ, respectively.

The operator Ï should be read “next Ï”, Ï U Ï

Õ “Ï

until Ï

Õ”, Ï “eventually Ï”, Ï R Ï

Õ “Ï releases Ï

Õ”, Ï

“always Ï”, and @ft
a2Ï “Ï at agent a2 using future seman-

tics”. In the next definition the formal DTL semantics is
given. If the formula is a past DTL formula, it is evaluated
as described for ptDTL formulas in section III. If it is a
future DTL formula, it is evaluated as described below.
Definition 6 (DTL semantics). Let a œ A be an agent, u œ
�+ an execution of the distributed system with the agents
a1, a2, . . . a

n

œ A and �Ê = (�a1)Ê ◊ (�a2)Ê ◊ . . . ◊ (�an)Ê

with �ai = APai the set of all possible runs of the system
without any message being sent or received. Then the DTL
semantics for a property @ft

a

Ï œ DTL is defined through the
evaluation function J· |= ·K : �+ ◊ DTL æ B3 as follows:

Ju |= @ft
a

ÏK =

Y
]

[

€ if ’w œ �Ê : [uw, 0 |=
a

Ï] = €
‹ if ’w œ �Ê : [uw, 0 |=

a

Ï] = ‹
? else

where the concatenation of a finite execution u =
(ua1

, u

a2
, . . . , u

an) œ �+ and a possible extension in
the form of an infinite run w = (wa1

, w

a2
, . . . , w

an) œ
�Ê of the system is performed element-wise as uw =
(ua1

w

a1
, u

a2
w

a2
, . . . , u

an
w

an) œ �Ê and the semantic func-
tion [·, · |=

a

·] : �Ê ◊N◊ sub(DTL) æ B3 is defined for an
agent a œ A with w œ �Ê being a run, b œ A another agent,
p œ APa a proposition, i œ N a position, @ft

a

Ï, @ft
a

Â œ DTL
future formulas and @pt

a

Ï

Õ œ ptDTL a past formula as

follows:
[w, i |=

a

true] = €

[w, i |=
a

p] =
;

€ if p œ w

a

i

‹ else
[w, i |=

a

¬ Ï] = [w, i |=
a

Ï]
[w, i |=

a

Ï ‚ Â] = [w, i |=
a

Ï] Û [w, i |=
a

Â]
[w, i |=

a

Ï] = [w, i + 1 |=
a

Ï]

[w, i |=
a

Ï U Â] =

Y
_____]

_____[

€ if ÷k Ø i : [w, k |=
a

Â] = €
and ’i Æ ¸ < k : [w, ¸ |=

a

Ï] = €
‹ if ’k Ø i : [w, k |=

a

Â] = ‹
or ÷i Æ ¸ < k : [w, ¸ |=

a

Ï] = ‹
? else

[w, i |=
a

@pt
b

Ï

Õ] =

Y
__]

__[

€ if u |=
b

Ï and u

b def.
or w0 |=

b

Ï and u

b undef.
with u = known

a

(w, i)
‹ else

[w, i |=
a

@ft
b

Ï] =

Y
]

[

— if ÷¸ : u = known
a

(w, ¸)
and — = Ju |= @ft

b

ÏK œ B2
? else

The same equivalences as in LTL apply for the other
operators.

The function [· |= ·] corresponds to LTL in the LTL3
semantics. Besides the additional @-operator the operators
are defined as in LTL with ? as a third truth value to pass
? from a remote future DTL formula to the outer operator.
The @pt is defined as in ptDTL in section III and the @ft

is used for specifying remote future DTL properties. The
actual position is unimportant for @ft because we wait for
a final truth value. If there exists no message containing
one, ? is returned because nothing final is known about
the remote formula.

Analogously to the LTL3 semantics another function
J· |= ·K is defined in the semantics. This function represents
the evaluation of the formula for the given execution. It
only returns one of the final truth values (€ and ‹) when
the formula is evaluated to that truth value for all infinite
extensions of the execution by the function [· |= ·].

As mentioned in the introduction there are more inter-
esting properties that can be verified in an asynchronous
distributed system than it is possible to monitor with
ptDTL. The next theorem shows that more properties are
monitorable with DTL than with ptDTL.
Theorem 2 (Monitorability). The classes safety, guar-
antee and their boolean combinations are monitorable with
DTL.

The proof for this theorem follows directly from the
analysis of the monitorability using di�erent truth domains
given in [5].

A. Monitor generation
As before the generation of monitors for a DTL formula

@x

a

Ï with x œ {ft, pt} and an agent a œ A is done by

Ï

Ï

LTL

¬ Ï

A

Ï

ABA

A¬ Ï

A

Ï

NBA

A¬ Ï

Â

Ï

NFA

Â¬ Ï

Ã

Ï

DFA

Ã¬ Ï

D

Ï

DMM

Fig. 3. LTL3 monitor generation procedure overview (see [7]).

creating a monitor for every remote subformula. Because
there are two types of remote subformulas, past and future
DTL formulas, two monitor construction procedures are
needed: The one for ptDTL formulas already presented
in the last section and the one for future DTL formulas
presented in this section.

In this section like in section III-A on the ptDTL
monitor construction let

remote(Ï) = {@x1
a1 ›1, @x2

a2 ›2, . . . , @xn
an

›

n

}

with x

i

œ {pt, ft} be the set of remote subformulas of
the given DTL formula @x

a

Ï with the cardinality n =
| remote (Ï)|. Using this indexing we define the set of
possible assignments of the knowledge vector as V =
{1, 2, . . . , n} æ B3.

The generation of monitors for those formulas is based
on the monitor construction for LTL3 formulas shown
in figure 3. To translate the additional @-operator the
construction of the Alternating Büchi Automaton (ABA)
is changed as follows. To transform a future DTL for-
mula @ft

a

Â into ABAs with knowledge vector, it is first
transformed into negation normal form. The ABA A

Â

=
(�a

, V, Q

Â

, Â, ”

Â

, F

Â

) is then constructed with the alpha-
bet �a = 2APa of agent a, the assignments V of knowledge
vectors in the distributed system, the set Q

Â

= sub(Â) of
states consisting of all subformulas of Â, the initial state
Â and the set F

Â

= {@ft
a1Â1, ¬@ft

a1Â1, Â1 R Â2} ™ Q

Â

of
accepting states. For ”

Â

: Q

Â

◊ �a ◊ V æ B+(Q
Â

) where
B+(Q) is the set of positive boolean combinations of a set
Q, applies the following for a proposition p œ APa, the
current state s œ �a, the current assignment v œ V of the
knowledge vector and formulas @ft

a1Â1, @ft
a1Â2 œ DTL:

”

Â

(p, s, v) =
;

true if p œ s

false else

”

Â

(¬p, s, v) =
;

true if p ”œ s

false else
”

Â

(Â1 ‚ Â2, s, v) = ”

Â

(Â1, s, v) ‚ ”

Â

(Â2, s, v)
”

Â

(Â1 · Â2, s, v) = ”

Â

(Â1, s, v) · ”

Â

(Â2, s, v)
”

Â

(Â1, s, v) = repl(Â1, v)
”

Â

(Â1 U Â2, s, v) = ”

Â

(Â2 ‚ (Â1 · (Â1 U Â2)), s, v)
”

Â

(Â1 R Â2, s, v) = ”

Â

(Â2 · (Â1 ‚ (Â1 R Â2)), s, v)

”

Â

(@ft
ai

›

i

, s, v) =

Y
]

[

true if v(i) = €
false if v(i) = ‹
@ft

ai
›

i

else

”

Â

(¬@ft
ai

›

i

, s, v) =

Y
]

[

true if v(i) = ‹
false if v(i) = €
¬@ft

ai
›

i

else

”

Â

(@pt
ai

›

i

, s, v) =
;

true if v(i) = €
false else

”

Â

(¬@pt
ai

›

i

, s, v) =
;

true if v(i) = ‹
false else

As before v is the current assignment of the knowledge
vector that contains the truth values for every remote for-
mula, taken from the newest message of the corresponding
agent and repl : sub(DTL) ◊ V æ sub(DTL) is a function
which replaces every remote future DTL formula with true
or false as soon as its final truth value is available in the
knowledge vector. This is required for the automaton to
make use of the special behaviour of three-valued remote
properties. After one final truth value is found, all later
arriving messages contain the same truth value. If the
future DTL formulas aren’t replaced as described the
satisfiability check for subformulas wouldn’t notice that
this truth value is the final one and therefore the remote
property can be fulfilled always or never from now on. This
satisfiability check, which is implicitly contained in the
DTL semantics, is explicitly performed during the monitor
generation by an emptiness-per-state test as described
later. Thus the replacement function repl is needed in the
monitor construction to be able to recognize final truth
values as soon as possible in the DTL monitor.

After the ABA A

Â

for @ft
a

Â is constructed, it is trans-
formed into an equivalent Nondeterministic Büchi Au-
tomaton (NBA) where V is viewed as part of the alphabet.
For the alphabet �

Â

of the resulting NBA �
Â

= �a ◊ V

then applies. In the same way @ft
a

¬Â is transformed into an
ABA A¬Â

and then into an NBA as well. On these NBAs
the emptiness-per-state test is performed, which tests for
every state if there exists a word that is accepted when
starting in this state, and only those states whose tests suc-
ceeded are marked as accepting. The resulting automata
are then interpreted as Nondeterministic Finite Automata
(NFA) and transformed into an equivalent Deterministic
Finite Automata (DFA). Out of A

Â

the DFA Ã

Â

and out
of A¬Â

the DFA Ã¬Â

is created. From the two DFAs the
Deterministic Moore Machine (DMM) D

Â

is constructed,
which is the monitor. The DMM simulates both DFAs.
The output for a state is € if the current state of the DFA
Ã¬Â

is not accepting and ‹ if the current state of Ã

Â

is
not accepting. Otherwise the output for a state is ?. The
whole process from the ABAs to the DMM is described in
[7].

As before in the ptDTL monitor generation the sys-
tem of monitoring functions and DMMs generated for
the formula @x

a

Ï œ DTL and all its remote subformulas
@xi

ai
›

i

œ remote(Ï) with x, x

i

œ {pt, ft} is denoted by M

Ï

.
Again let w œ �+ be an execution of the distributed system
A. The new states of the monitoring functions and DMMs
in this system and the assignments of the knowledge
vectors of the agents are computed in the same way as
described in section III-A on ptDTL monitor generation
and M

Ï

(w) denotes the output of the monitor generated
for the main formula Ï after this systems reads the whole
execution w.

The following theorem states the correctness of this

system of monitoring functions and DMMs.
Theorem 3 (Correctness of DTL monitors). For an exe-
cution w œ �+ of the distributed system A, a DTL formula
Ï œ DTL and the corresponding monitoring system M

Ï

the
following holds:

1) If Ï = @pt
a

Â is a past time DTL formula, then
M

Ï

(w) = € i� w |= Ï.
2) If Ï = @ft

a

Â is a future time DTL formula, then
M

Ï

(w) = Jw |= ÏK.

Proof: Statement 1) follows directly from theorem 1.

To show statement 2) let u œ �Ê be a run of the
distributed system A and û

a œ (�a)Ê the run of agent
a œ A contained in u without the message symbols.
Based on the assumption that it will be provided with
the correct knowledge vector assignment in every step
the ABA A

Ï

generated for a formula @ft
a

Ï rejects û

a i�
Ju, 0 |=

a

ÏK = ‹. For formulas using only the common
LTL operators this observation results from the ABA being
generated using the well known translation from linear
temporal logics to an alternating Büchi automaton from
[12]. For the new @-operator the observation holds because
”

Ï

(@ft
ai

, s, v) = false is specified in the definition if v(i) = ‹
for any sign s œ �a. As the knowledge vector is assigned
using the same mechanism as in 1) the assumption of its
correctness follows from 1). Performing the emptiness-per-
state test described above on the NBA equivalent to this
ABA we get an NFA and its equivalent DFA Ã

Ï

. As the
output of the DMM depends only on the rejection of words
in Ã

Ï

and Ã¬ Ï

statement 2) follows from the observation
above.

B. Advantages

The main advantage of DTL over ptDTL are the addi-
tional future DTL formulas. Through these formulas the
set of monitorable properties of DTL is much larger than
the one of ptDTL. More precisely according to theorem 2
it is possible to monitor properties of the classes safety,
guarantee and their boolean combinations with DTL in-
stead of either safety or guarantee with ptDTL. By adding
future LTL operators to ptDTL the resulting logic is more
succinct than ptDTL, too. This can be compared to LTL
with past being exponentially more succinct than LTL as
shown in [13]. Furthermore the semantics of future DTL
formulas is anticipatory and thus final truth values are
recognized as soon as possible.

Another advantage comes from the usage of the model
from section II as a model for asynchronous distributed
systems. Through the usage of message symbols and the
known prefix given there the @-operator in ptDTL and
DTL is defined precisely. The semantics is defined over
executions containing not only the atomic propositions but
also information about the messages sent and received by
the agents. Hence for the precise theoretical evaluation of
a formula only the execution is needed. This isn’t possible
with ptDTL as defined by Sen et al. in [4] because there
the communication between the agents is not modelled
explicitly.

Furthermore it is possible to use future DTL formulas
as remote formulas and thus truth values of those remote
formulas are three-valued, too. Thus a monitor knows from
some truth values in messages that they won’t change any-
more on the remote monitor which o�ers more certainty
about the state of a remote formula. This is especially
useful to combine the output of di�erent monitors into one.

V. Application on LEGO Mindstorms1

In this section we finally present the application of
distributed RV on LEGO Mindstorms NXT agents. The
firmware of these agents provides access to actors like
motors and lights as outputs, analog and digital sensors
as inputs and allows communication between the agents
via Bluetooth. The sensors are numbered from 1 to 4 and
the actors from A to C. We program the agents using
the C-like programming language Not eXactly C (NXC)
developed by John Hansen2. The monitor generation is
written in Scala, takes the NXC source code files as input,
adds C-code to step the monitors and instruments the C-
code to compute assignments of the atomic propositions.

We chose this platform to demonstrate the usage of
DTL and for educational purpose. Prototypical setups can
be easily built using LEGO bricks. Because we actually
instrument C-like code the implementation can be adopted
for many other embedded systems, e.g., industrial control
systems.

To add RV the user needs to annotate the NXC code
of the agents. Annotations are C-comments to allow the
compilation of the code with and without the generated
code. For every monitor a monitor annotation with a
DTL formula has to be added to the code of the agent
on which the monitor should run. The propositions used
in the formula must be declared afterwards. Propositions
can be assigned by using explicit C-functions that are
evaluated each step, by using explicit assignments that
are executed if the run reaches its location or by program
transformation via regular expressions. Remote subformu-
las can be declared as external propositions that will be
assigned with the output of remote monitors declared as
public. Additionally annotations have to be added to step
the monitor. A monitor can be explicitly stepped if the
execution reaches the annotation, it can be stepped if a
proposition changes or after a given time.

The preprocessing of the NXC code of the agents is
done by the Scala program in several steps:

1) The software analyzes the code and parses the
annotations. As the result of this step a list of
all public monitors of all agents is generated.
If a monitor’s output is referred to an external
proposition it has to be declared as public.

2) The monitors are generated using the appropriate
monitor generation procedure described in sec-
tions III-A and IV-A.

3) A mapping from all public monitors to positions
in the knowledge vector is computed. For every

1The software and a video of the case study are available at
http://www.isp.uni-luebeck.de/legomeetsrv.

2http://bricxcc.sourceforge.net

C3

2 B

agent a3

C

C2

A 1
T

S

A

B

agent a2

C

C1

1

A

agent a1C

Fig. 4. Schematic layout of an assembly line consisting of three
conveyors Ci, a revolving table T and a slider S. The assembly line
is controlled by three NXT agents ai. Their inputs 1, 2 and 3 are
attached to brightness sensors, which detect work pieces next to them.
Their outputs A, B and C are attached to motors and yellow indicator
lamps.

public monitor the initial output is computed. For
future DTL monitors this is ? and for past DTL
monitors the output of the first step is used as
initial output. To perform the first step the initial
values of the declared propositions are used. This
may include external propositions referring to the
outputs of other public monitors.

4) The C-code for the monitors and for the proposi-
tions is generated and inserted in the agent’s NXC
code and the knowledge vector is declared using
the initial values computed above. Two callback
functions are generated. One that is called every
time a message is sent and that adds the knowl-
edge vector to the original message content and
another one that is called with every incoming
message and that parses the incoming message,
updates the knowledge vector accordingly and
returns the original message content.

A. Case Study

To demonstrate how DTL and its monitors can be used
to monitor a real distributed system we choose the setup
of an assembly line. Modern industrial control systems are
distributed systems where the components are embedded
in the part of the plant they control. Distributed RV can
be used to assert the correct functionality of such a system.
The following example shows how one can benefit from the
DTL monitoring presented in this paper in such a use case.

Consider the setup visualized in figure 4: Three con-
veyors C

i

, a revolving table T and a slider S move a
work piece through the assembly line. Conveyor C1 moves
the work piece onto the table T , which rotates it by 90
degrees. The slider S moves the rotated work piece onto
conveyor C2, which passes it on to the output conveyor
C3. Every conveyor is controlled by the motors A or B

attached to it. The brightness sensors 1 or 2 become active
if a work piece is moved next to them. Output C of the

agents is connected to a yellow lamp indicating the output
of selected monitors.

In this setup we now want to verify that a work piece
only leaves the revolving table if the table was rotated
and a work piece has entered it before. This property is
fulfilled or violated precisely at the moment the first work
piece leaves the revolving table. Therefore a three-valued
semantics is needed to monitor such a property. As already
explained in the introduction the described property can
be expressed in DTL as follows:

Ï = @ft
a3(¬ s1 U @pt

a2(m
A

· @pt
a1 s1)).

The main monitor has to run on agent a3, so its
annotations are placed in the header of a3.nxc. The main
monitor m3 is defined by the LTL formula ¬ s1 U m2 and
its output is displayed on the yellow light connected to
this monitor via the callback blink. The proposition s1
is given via a native C-function reading the value of sensor
1. The proposition m2 is defined as external proposition
whose value is assigned to the output of the monitor with
the same name located on agent a2.
//= MONITOR m3 FDTL = !s1 U m2 CALL blink
//= PROPOSITION s1 DEFINE Sensor(S1)
//= PROPOSITION m2 EXTERNAL a2

In reality further annotations are needed to set up that
the monitor is stepped each time the value of a proposition
changes.

In the header of the code a2.nxc of agent a2 the
public monitor m2 is defined by the ptLTL formula
m

A

· m1. The proposition m

A

is declared to become
true when the output A was activated using a call like
OnFwd(OUT_A, 100); and false when the output A was
disabled using a call like Off(OUT_A);. The proposition
m1 is defined as external like m2 above.
//= PUBLIC MONITOR m2 PTDTL = ma && (*) m1
//= PROPOSITION ma ON /OnFwd\(OUT_A[^)]+\);/

OFF /Off\(OUT_A\);/
//= PROPOSITION m1 EXTERNAL a1

Finally in the header of the code a1.nxc of agent a1
the public monitor m1 is defined by the ptLTL formula

s1 and the proposition s1 is declared as before.
//= PUBLIC MONITOR m1 PTDTL = <*> s1
//= PROPOSITION s1 DEFINE Sensor(S1)

The examples above show how distributed RV can
be added to an existing distributed system using prepro-
cessing of the source code following annotations given in
comments. To do so in a real application one not only
needs to specify the property to verify but also how the
propositions should be assigned based on the internal state
of the agent under scrutiny and when the state transitions
of the monitors take place.

B. Benchmarks
Another setup is used to generate quantifiable state-

ments on the performance of the implemented system on

remote monitors

ti
m

e
(s

)

0 2 4 6 8 10 12 14

0.1

0.2

0.3

ft 1

pt 1
ft 2

pt 2
ft 3

pt 3

Fig. 5. Average round trip time of a message sent from a main agent
to a remote agent and back. A future time (ft) or past time (pt)
monitor is attached to the main agent using external propositions
referring to public monitors attached to the remote agent. These
monitors use 1, 2 or 3 atomic propositions switched in every iteration.

LEGO Mindstorms NXT robots. Instead of four only two
agents a, b œ A are used. The main agent a sends a message
ping and waits for the answer pong of the remote agent
b. This is repeated 100 times in one pass and the time
between sending the first ping and receiving the last pong
is measured to compute the average round trip time of one
such message pair.

This system is monitored using formulas of the follow-
ing form

@x

a

(Ï0 U(Ï1 U(. . . U(Ï
i≠1 U Ï

i

)))

where x œ {pt, ft} is varied to compare both techniques.
In case of pt of course the operator S is used instead
of U . The formulas Ï

i

are of the same principle form
@pt

b

(p0 S(p1 S p2)) using the atomic propositions p

i

œ APb

whose assignments are switched in every iteration to max-
imize the computation needed to step the monitors. These
formulas are chosen as their size can be flexibly varied and
they generate most complicated monitors.

Figure 5 shows the results of these benchmarks. The
round trip time of one message pair is plotted over the
total number of remote monitors. On the main agent a one
formula consists of a maximum of seven remote formulas
which means that for every seventh remote formula a new
main formula is created. The benchmark results reveal that
the monitors for future time formulas are not slower than
the monitors for past time formulas, which mainly use the
algorithm presented in [4]. One can conclude that the DTL
monitors presented in this paper are more powerful in the
sense of monitorability without creating more monitoring
overhead than the ptDTL monitors.

VI. Conclusion
We developed a monitor generation procedure for

three-valued RV of asynchronous distributed systems.
With this procedure we are able to monitor many prop-
erties that weren’t monitorable before on such systems.

In particular this includes boolean combinations of safety
and guarantee properties. Besides that, DTL monitors
detect final verdicts as soon as possible using the implicit
satisfiability check performed by the emptiness-per-state
test in the LTL3 monitor construction procedure.

Furthermore we implemented the DTL monitor gen-
eration as a code preprocessing on LEGO Mindstorms
NXC source code. The implementation is done fully in
Scala and provides an easy to use interface. Of course this
includes the ability to monitor a local property specified
in ptDTL or LTL3. We used this platform as an easy
to program model of asynchronous distributed systems
to demonstrate distributed RV on real world systems
and to generate benchmarks. The implementation can be
extended to any other embedded system programmed in
a C-like language with little changes. The benchmarks
show that our extension of ptDTL only adds more features
and doesn’t increase the computational overhead through
monitoring.

We have seen from the example of the assembly line
that monitoring with DTL is especially useful to monitor
remote past time properties embedded in a local three-
valued formula or for combining multiple remote three-
valued properties in a local one.

References
[1] P. O. Meredith, D. Jin, D. Gri�th, F. Chen, and G. Ro�u,

“An Overview of the MOP Runtime Verification Framework,”
STTT, vol. 14, no. 3, pp. 249–289, 2012.

[2] A. K. Bauer and Y. Falcone, “Decentralised LTL Monitoring,”
vol. 7436, pp. 85–100, 2012.

[3] A. Pnueli, “The Temporal Logic of Programs,” in 18th FOCS.
IEEE Computer Society, 1977, pp. 46–57.

[4] K. Sen, A. Vardhan, G. Agha, and G. Rosu, “E�cient Decen-
tralized Monitoring of Safety in Distributed Systems,” in 26th
ICSE, A. Finkelstein, J. Estublier, and D. S. Rosenblum, Eds.
IEEE Computer Society, 2004, pp. 418–427.

[5] Y. Falcone, J.-C. Fernandez, and L. Mounier, “What can you
Verify and Enforce at Runtime?” STTT, vol. 14, no. 3, pp.
349–382, 2012.

[6] Z. Manna and A. Pnueli, “A Hierarchy of Temporal Properties,”
in PDOC, C. Dwork, Ed. ACM, 1990, pp. 377–410.

[7] A. Bauer, M. Leucker, and C. Schallhart, “Runtime Verification
for LTL and TLTL,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 4, pp. 14:1–14:64, 2011.

[8] K. M. Chandy and L. Lamport, “Distributed Snapshots: De-
termining Global States of Distributed Systems,” ACM Trans.
Comput. Syst., vol. 3, no. 1, pp. 63–75, 1985.

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, 1978.

[10] C. J. Fidge, “Timestamps in Message-Passing Systems That
Preserve the Partial Ordering,” Aust. Comput. Sci. Commun.,
vol. 10, no. 1, pp. 56–66, 1988.

[11] K. Havelund and G. Rosu, “Synthesizing monitors for safety
properties,” in 8th TACAS, ser. Lecture Notes in Computer
Science, J.-P. Katoen and P. Stevens, Eds., vol. 2280. Springer,
2002, pp. 342–356.

[12] M. Y. Vardi, “An automata-theoretic approach to linear tem-
poral logic,” in Ban� Higher Order Workshop, F. Moller and
G. M. Birtwistle, Eds. Springer, 1995, pp. 238–266.

[13] N. Markey, “Temporal Logic with Past is Exponentially More
Succinct,” Bulletin of the EATCS, vol. 79, pp. 122–128, 2003.

